Local Quasigeoid Modelling Using Gravity Data Inversion Technique - Analysis of Fixed Coefficients of Density Model Weighting Matrix
نویسنده
چکیده
The paper presents analysis relating to the method of local quasigeoid modelling based on the geophysical technique of gravity data inversion, using non-reduced surface gravity data and GNSS/levelling height anomalies. One of the main problems occurring in the application of the method is to determine the model weighting matrix, the purpose of which is to control the inversion process. This paper presents the analyses concerning the determination of certain constant coefficients signed as , and , appearing in the definition of the model weighting matrix. The calculations performed indicate that because of the accuracy of the density model, the coefficient should be in the range of 01 . 0 001 . 0 , and the range 005 . 0 0025 . 0 should be adopted as the optimal. As the optimal values of the coefficients and , values 1 . 0 and 01 . 0 , for the zones of constant density with area less than about 130 2 km were determined.
منابع مشابه
3D gravity data-space inversion with sparseness and bound constraints
One of the most remarkable basis of the gravity data inversion is the recognition of sharp boundaries between an ore body and its host rocks during the interpretation step. Therefore, in this work, it is attempted to develop an inversion approach to determine a 3D density distribution that produces a given gravity anomaly. The subsurface model consists of a 3D rectangular prisms of known sizes ...
متن کاملEstimation of 3D density distribution of chromites deposit using gravity data
We inverse the surface gravity data to recover subsurface 3D density distribution with two strategy. In the first strategy, we assumed wide density model bound for inverting gravity data and In the second strategy, the inversion procedure have been carried out by limited bound density. Wediscretize the earth model into rectangular cells of constant andunidentified density. The number of cells i...
متن کامل2D inversion of gravity data in bedrock identification (case study: a part of Qotrum plain in Yazd province)
Introduction The gravity method measures the vertical component of the acceleration at the Earth’s surface. The earth’s gravity field is affected by the density of different rocks and structures. Therefore, this method can be used in mineral exploration or studying the subsurface cavities and structures such as bedrocks, channels, and dikes. Inverse modeling is useful in understanding the p...
متن کاملCalculation of One-dimensional Forward Modelling of Helicopter-borne Electromagnetic Data and a Sensitivity Matrix Using Fast Hankel Transforms
The helicopter-borne electromagnetic (HEM) frequency-domain exploration method is an airborne electromagnetic (AEM) technique that is widely used for vast and rough areas for resistivity imaging. The vast amount of digitized data flowing from the HEM method requires an efficient and accurate inversion algorithm. Generally, the inverse modelling of HEM data in the first step requires a precise a...
متن کاملNon-linear stochastic inversion of regional Bouguer anomalies by means of Particle Swarm Optimization: Application to the Zagros Mountains
Estimating the lateral depth variations of the Earth’s crust from gravity data is a non-linear ill-posed problem. The ill-posedness of the problem is due to the presence of noise in the data, and also the non-uniqueness of the problem. Particle Swarm Optimization (PSO) is a stochastic population-based optimizer, originally inspired by the social behavior of fish schools and bird flocks. PSO is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012